Generalizations of the strong Ekeland variational principle with a generalized distance in complete metric spaces
نویسندگان
چکیده
منابع مشابه
Complete Generalized Metric Spaces
The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...
متن کاملA contraction principle in generalized metric spaces
One of the generalizations of the Banach Fixed Point Theorem is due to Matkowski, who replaced contractivity by a weaker but still effective property. The aim of this note is to extend the contraction principle in this spirit for such semimetric spaces that are equipped with a natural generalization of the standard triangle inequality. The stability of fixed points is also investigated in this ...
متن کاملGeneralized multivalued $F$-contractions on complete metric spaces
In the present paper, we introduce the concept of generalized multivalued $F$ -contraction mappings and give a fixed point result, which is a proper generalization of some multivalued fixed point theorems including Nadler's.
متن کاملGeneralized multivalued $F$-weak contractions on complete metric spaces
In this paper, we introduce the notion of generalized multivalued $F$- weak contraction and we prove some fixed point theorems related to introduced contraction for multivalued mapping in complete metric spaces. Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2013
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2013-120